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Abstract
The exploration of flexible and intelligent system man-

agement in the edge-cloud continuum is a non-trivial task.
To start with, a suitable system infrastructure is needed,
which is representative of the significant heterogeneity in
the computing continuum, especially at the edge. In addi-
tion, deployment and orchestration support is necessary to
run applications on top of the infrastructure and to exploit
acceleration hardware. Furthermore, one needs to be able to
monitor application execution and change the current con-
figuration in a flexible way at runtime. Last but not least, it
should be possible to plug-in different management policies
in a straightforward way. In this paper, we introduce a min-
imal testbed along with an indicative application, offering
several typical features of edge-oriented continuum systems.
The testbed comes with a monitoring and control dashboard
while providing various hooks and knobs for implementing
different policies for automated infrastructure and applica-
tion management.

Categories and Subject Descriptors
[Computer systems organization]: Architectures—

Other architectures, Heterogeneous (hybrid) systems;
[General and reference]: Cross-computing tools and tech-
niques—Experimentation
Keywords

Heterogeneity, Testbed, Edge-Cloud Continuum, System
Management

1 Introduction
Modern computing systems span the continuum, includ-

ing different and widely heterogeneous nodes at the edge and
in datacenters, which may be equipped with hardware ac-
celerators that can be used to perform computations in an
energy-efficient way. The deployment and configuration of

applications running in such systems is a complex task, not
only in terms of the core mechanisms used to execute the
application but also in terms of the decisions that need to be
taken, often at runtime, in order to respect application perfor-
mance constraints. It is therefore important to enable testing
and evaluating different policies in a straightforward way.

To this end, we introduce a testbed that allows policy
developers to flexibly experiment with different policies,
without having to deal with the physical setup of nodes or
the details of the underlying application execution mecha-
nisms. This is achieved by providing structured interfaces
to the core application deployment, node configuration, and
telemetry mechanisms. In addition, a graphical dashboard
can be used to monitor system operation and to enable man-
ual system configuration and control.

Recent work [20] describes an edge computing testbed
for application deployment at the edge, while automatically
managing the optimization of the round-trip-time of con-
tainer interaction. Our work focuses on enabling the config-
uration and optimization of different aspects of the system
via externally provided policies. The Ainur framework [9]
is designed as a hardware-agnostic testbed that uses cloud
and edge native technologies to automate the configuration
of the infrastructure, the deployment of an application work-
load, and the collection of log data. The main focus of our
work is on offering a clearly defined API that an external ac-
tor can use to get telemetry data and issue actions at runtime
in order to explore different configuration options.

The rest of the paper is structured as follows. Section 2
introduces our testbed. Section 3 discusses the monitoring
hooks and various configuration knobs that can be used by
system management policies. Section 4 describes an indica-
tive application we have used to validate the testbed, and the
respective user interface elements that we used to manually
configure the system and observe its operation. Finally, Sec-
tion 5 concludes the paper.

2 Testbed
2.1 Physical infrastructure

The testbed, illustrated in Figure 1, is designed to pro-
vide a minimal but indicative edge-cloud system that can be
used to run various test applications. More specifically, it in-
cludes 3 heterogeneous physical nodes that represent differ-
ent layers of the continuum: (i) a Raspberry Pi (RPi) single-
board computer, which plays the role of a mid-end edge (and



potentially mobile) sensor node with a camera; (ii) a Xil-
inx ZCU102 development board hosting an ARM MPSoC
with an integrated FPGA, which plays the role of a station-
ary mid-end edge node with acceleration capabilities; (iii) a
workstation with an Intel x86 CPU and an NVIDIA GPU,
which plays the role of a high-end heterogeneous node in a
data center.

In terms of networking, every node is connected to the
same LAN using an Ethernet interface. The RPi can also
communicate with the Xilinx ZCU102 directly via Wi-Fi.
Furthermore, it has a 4G/LTE modem, which can provide
mobile Internet connectivity offering yet another path for the
RPi to communicate with the Xilinx ZCU102 and the x86
workstation. In order to ensure proper communication of the
mobile node with the rest of the cluster nodes, particularly
over public 4G/LTE, a VPN gateway is used as a relay.

Part of the testbed are also two virtual machines (VMs)
that run on our private cloud cluster, which host (i) the con-
trol plane of the application deployment and orchestration
mechanism, and (ii) the telemetry storage and dashboard, re-
spectively.

2.2 High-level software organization
Figure 2 shows the conceptual, high-level software orga-

nization of the testbed. On the one hand, a deployment and
orchestration mechanism is used to install and interconnect
the components of a distributed application on the testbed
nodes, including support to expose acceleration functional-
ity to the application. On the other hand, a telemetry mecha-
nism is used to monitor the nodes and application execution
and to provide status information and performance metrics
at runtime. This information can be used by a policy to take
management decisions, which are, in turn, applied by invok-
ing the underlying configuration mechanisms.

2.3 Deployment & orchestration
Following the current trend in software packaging and de-

ployment, application components are provided in the form
of containers. Notably, for each component, the applica-
tion developer can provide multiple implementations (con-
tainer images), which exploit different hardware resources
(e.g. CPU only vs. FPGA vs. GPU) and/or offer different
performance/accuracy trade-off points.

The testbed currently comes with runtime support for
Docker containers [8], while the actual container deploy-
ment and orchestration are performed using K3S [5], a
lightweight implementation of Kubernetes which is appro-
priate for resource-constrained devices, such as the RPi. For
convenience, besides the components of the application to
be tested, the majority of telemetry components also run as
containers.

For the flexible and adaptive deployment of the applica-
tion, we use the Fluidity framework [15]. This is built on
top of Kubernetes, providing additional deployment flexi-
bility for distributed applications that employ mobile nodes,
while also enabling transparent handling of the application-
level data traffic, redirecting it to a potentially more efficient
communication channel rather than the default one. The ar-
chitecture of Fluidity is shown in the lower part of Figure 3.
Next, we provide brief descriptions of the main components.

The cluster controller runs in the Management VM and
interacts with the Kubernetes control plane via the standard
API. It is responsible for invoking Kubernetes to execute the
desired deployment of application containers on the nodes of
the testbed, as well as for retrieving the status of Kubernetes-
related resources. Furthermore, the cluster controller inter-
acts with the node controllers in order to switch among dif-
ferent routing options for application data traffic.

The node controllers, running on each of the testbed
nodes, handle the node-level communication interfaces and
cooperate with each other to support the components’ inter-
actions. Specifically, when instructed by the cluster con-
troller to select a different interface for the interaction be-
tween two application components, the node controllers of
the respective nodes prepare the link and apply the respec-
tive routing rules locally.

Finally, the node controller keeps track of node-level
resource utilization and updates custom node-related re-
sources. These updates are retrieved by the cluster controller
via the standard Kubernetes API.

2.4 Acceleration
The flexible exploitation of accelerators on the nodes of

the testbed is supported using the vAccel [18] framework.
Figure 4 provides a high-level overview of the software
stack. The core component is the plugin system, allowing to
attach so-called plugins to pre-defined API operations. For
instance, an image classification API operation may have
a plugin for a CPU, a GPU, or an FPGA implementation.
Multiple plugins may exist for the same operation, providing
alternative implementations that can be selected at runtime
when an API operation call is issued.

The stock vAccel framework chooses the plugin for a
given operation based on a static, framework initialization-
time configuration option. In our testbed, we have extended
vAccel so that it receive hints from the node controller of
the testbed, making it possible to change the plugin selection
decision dynamically, at runtime. This entire functionality is
wrapped in a frontend library (see Figure 3) making the main
application code agnostic both to the vAccel framework and
the dynamic plugin selection.

2.5 Telemetry
We have built the telemetry system according to the

OpenTelemetry (OTEL) specification [12]. The upper part
of Figure 3 shows the telemetry architecture. The main soft-
ware component is the OTEL collector [13], which can op-
erate in the so-called agent or the gateway mode.

In every testbed node we run the collector in the agent
mode. Different metrics are collected using two open-source
tools: (i) the node exporter [10] and (ii) the NVIDIA GPU
exporter [3]. The node exporter can query and parse infor-
mation from every available system source, such as hardware
performance counters, using the perf tool, and the operating
system. The NVIDIA GPU exporter is used to collect statis-
tics from the respective hardware device (if available on the
node), relying on the nvidia-smi tool to extract the necessary
information. The collector agent pulls data from those ex-
porters using the Prometheus receiver plugin.

The collector agent can also gather application-level
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Figure 2: High-level software organization of the testbed.

telemetry. Namely, application components can push arbi-
trary information to the agent through a simple API, dis-
cussed in more detail in Section 3. While the application de-
veloper needs to properly “instrument” the component in or-
der to generate the desired metrics, using the API is straight-
forward and comes with little programming effort. The ben-
efit is that the application can expose its own metrics, so that
these can be taken into account by the policy that takes or-
chestration and configuration decisions.

An agent collector is also placed in the Management VM,
to gather cluster-level status information. To this end, suit-
able receiver plugins are implemented for the interaction
with the K3S API Server, while the standard OTEL receiver
is used to accept telemetry from the Fluidity controller.

In the Telemetry VM, we run an instance of the OTEL col-
lector in gateway mode, which stores the data received from
all collector agents in a Prometheus database [16]. Log mes-
sages can also be collected from the agents, and are stored in
a Loki database [6]. Finally, Grafana [4] is used to visualize
the data stored in both databases.

Notably, collector agents can be configured to process
data in batches with low overhead. For instance, certain
telemetry data may be produced at a high rate (e.g. every
30ms), whereas the agent can temporarily store the data in
memory, and then forward it to the gateway with a lower
rate (e.g. every 500ms). The aggregation of telemetry data
can be performed in a similar way, to generate and propagate
upstream more compact statistics/status digests rather than a
voluminous stream of raw data. Our testbed also leverages
the internal data pipeline of the OTEL collector, which is
composed of three stages: receive, process, and export. The
telemetry data stream that enters the collector through dif-
ferent receivers, can be transformed with different methods
before being exported to a data sink. In addition, more ad-
vanced transformations can be implemented using the OTEL
Transformation Language [14]. The telemetry system also
emits its own status in the same stream. Finally, we use the
routing connector plugin of the OTEL Collector that can cre-

Table 1: Application telemetry API.

Method Arguments Description
sendMetric name, value name & value of the metric
sendLog name, value name & contents of log entry

Table 2: Indicative metric attributes.

Attribute Description
instance hostname of the node of collector agent
job hostname of the node of collector gateway
node name node related to this reading
value value of the collected metric

ate different internal paths for the telemetry data stream, e.g.,
to export different data to the node-level telemetry interface
vs. the data transmitted upstream to the gateway.

3 Monitoring Hooks & Configuration Knobs
3.1 Telemetry interface

Application telemetry is collected through a simple API,
shown in Table 1, which abstracts-out the interaction with
the OTEL collector agent running on the node that hosts
the application component. The API is simple and generic
yet powerful, as the application can send upstream arbitrary
performance metrics and/or log messages. However, the
container image of the application component must include
the corresponding library, which is provided as part of the
testbed support toolkit.

The contents of the telemetry database can be retrieved
using the Prometheus Query Language (PromQL) [17], a
functional query language for querying data in real time and
performing different types of analysis, aggregations, and op-
erations. Any container running in the testbed cluster can
access the Prometheus database via a REST API provided
by a globally accessible endpoint. A node-level telemetry
interface is also available, which works as a Prometheus ex-
porter. It can be queried via a simple REST API (without us-
ing PromQL) to get raw data in Prometheus metrics format.
Note that this API only provides the latest readings from the
different local telemetry exporters; it is up to the client to
store the data history, if necessary.

By default, a multitude of metrics are collected for each
host/node as well as for the individual containers running
on it. PromQL can be used to query the collected metrics
to extract any piece of information required, e.g., in order
to implement a given policy or to display on a dashboard.
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Table 3: Indicative data samples for node-level metrics.

Metric Name Raw Data
node cpu utilization instance=otelcol:9464

job=otel
node name=zcu102
value=50

node power consumption instance=otelcol:9464
job=otel
node name=zcu102
value=1.4

node cpu frequency profile instance=otelcol:9464
job=otel
node name=zcu102
value=4

More specifically, telemetry data carry attributes that can be
used to distinguish the origin of the metric (the node or con-
tainer related with the data). A few indicative attributes are
listed in Table 2, while Table 3 provides indicative samples
of node-level metrics. There are hundreds of metrics that are
exported, related to CPU, Memory, Disk, and Network statis-
tics. Our testbed offers the necessary tools to query, filter and
normalize these data, either by configuring the processing
within the telemetry pipeline or by querying the telemetry
database to get only selected data.
3.2 Configuration options

The main configuration options that are available concern:

1. The placement of the application components on the
different nodes of the testbed.

2. The container image to be used for a given application
component.

3. The application-level data path used for (individual)
component interactions.

4. The use of hardware accelerated function implementa-
tions.

5. The operating frequency of the node’s CPU / accelera-
tor.

The aforementioned control knobs can be used to ex-
ploit different aspects of the heterogeneous nodes based on
their unique characteristics and capabilities, leading to dif-
ferent application QoS under different system operation con-
straints.

For example, an application component can exploit avail-
able hardware accelerators, either by deploying a suitable
version (container image) that is built to use a GPU/FPGA
acceleration module, or by using the vAccel framework to
flexibly switch function implementations at runtime with-
out having to change the container image of the component.
Moreover, in scenarios where a modular application needs to
run one or more components on a mobile node, it is usually
desired to replicate or migrate some other application com-
ponents to the edge and allow them to interact directly with
each other over short-range wireless network links, rather
than 4G/LTE and the public Internet.

From the system administrator’s perspective, some of the
supported knobs can be leveraged to reduce the node-level or
cluster-level energy consumption and/or cost of operation.
More specifically, one may reduce the operating frequency
of specific nodes or hardware devices without necessarily
harming application QoS, or may place several components
on the same node in the spirit of consolidation.

In terms of APIs, the approach is similar to the solution
used for the telemetry system. Whenever a configuration de-
cision is made, the corresponding configuration command is



Table 4: Configuration REST API.

Endpoint Payload Functionality
/placement toNode,

componentID
Places a component on
a node

/image imageName,
componentID

Changes the container
image for a component

/network networkInterface,
componentFrom,
componentTo

Changes the network
interfaces used for a
component interaction

/acceleration plugin,
componentID

Change the vAccel
plugin used for a
component

/frequency resourceType,
node,
targetFrequency

Changes the frequency
of the hardware re-
source of a node

Capture video 
frame

Calculate 
Optical Flow

Input Component 1

Component 2Output

Figure 5: Application Diagram. The snapshot shown here
comes from the demo video of OpenCV library [1].

sent to the Fluidity cluster controller via REST to a global
endpoint. The Fluidity controller has a dedicated thread run-
ning a Flask server [2], which captures and parses the in-
coming requested action and subsequently executes it (if ap-
plicable). The configuration API is described using the Ope-
nAPI specification [11]. Table 4 summarizes the available
endpoints and their respective arguments. It is important to
note that this API can be used both for manual configura-
tion (e.g., via a control panel) and automated adaptation via
a policy (e.g., driven by a suitably trained machine-learning
model) designed to achieve autonomic system operation.

4 Application Example
To evaluate the functionality of our testbed, we use an

optical flow application, which is characterized by a high
degree of resource requirements variability during execution
and is modular so it can be split into different components. In
a nutshell, the application uses computer vision algorithms to
calculate the trajectories of objects in a scene, by recognizing
brightness change patterns in the picture.

The application consists of two components, C1 and C2
as seen in Figure 5. C1 takes input from a camera connected
to an edge node (in our case, the RPi), pre-processes the
frames and sends them to C2. In turn, C2 performs some
heavyweight processing on the image to calculate the optical

flow. For the implementation of both components, we use
the OpenCV library [1], which offers implementations for
CPU and GPU (CUDA). For the FPGA implementation of
the second component, we use Vitis Vision Library [19] that
offers the equivalent hardware implementations for several
OpenCV functions. The main test case is to identify an ini-
tial features set, and then track those features across frames
until they disappear from the field of view of the camera. We
use the KITTY Dataset as our main input [7].

We have developed a custom dashboard and control panel
to monitor the state of the application deployment and exe-
cution, and activate the different configuration options. Fig-
ures 6 and Figure 7, depict the dashboard and the control
panel respectively.

The dashboard shows the 3 nodes of the testbed, the avail-
able computation resources (CPU, GPU, FPGA), the net-
working interfaces, and the containers (application compo-
nents) running on the nodes. For each running container
the dashboard also shows the image used and the respective
application-level metrics. For a node that has no active con-
tainers the tool shows which container can potentially run
on it, however, the container image is indicated as inactive
with a red color. For computational resources we illustrate
the current utilization and power consumption and the avail-
able frequency configurations. The active configuration is
designated with green color. The same applies to the active
network configuration and link.

The control panel provides a set of buttons to set the de-
sired configuration options. The buttons for the frequency
and the network path will change to the next setting follow-
ing a round-robin logic. All other buttons perform their as-
signed action only if it will change the current state. Regard-
ing the placement buttons, if the redeployment is unfeasible
e.g. due to resource limitations, the dashboard is suitably up-
dated. This way one can flexibly experiment with different
configurations and produce large volumes of telemetry data.
In turn, this can be used to design rule-based policies or to
train ML models that take configuration decisions.

Note that both the dashboard and the control panel
can be tailored to the specific nature of the application at
hand, considering its component structure and the moni-
toring/configuration options that are provided by the per-
son conducting the experiment. In any case, full program-
matic access to all telemetry information and all configura-
tion knobs, is provided via the respective APIs. In particular,
it is possible to run any configuration policy, using specific
rules or an ML model, in tandem with a dashboard to visu-
alize the choices that are taken automatically. At the same
time, one can use a control panel to manually introduce dy-
namic changes in resource availability, which in turn may
lead the policy to adapt system configuration.

5 Conclusions
In this paper, we have introduced a prototype testbed de-

signed to represent systems in the heterogeneous edge-cloud
continuum. It leverages container technology and the re-
spective tools from the container ecosystem, along with spe-
cific enhancements from third-party software, allowing the
flexible deployment and transparent usage of heterogeneous



Figure 6: The dashboard for the visual deployment and performance status of the optical flow application.

Figure 7: An instance of the control panel used for the man-
ual activation of the different configuration options.

hardware resources. OpenTelemetry components enable a
robust and flexible telemetry system, providing rich data
that can be used by external policies to make management
and configuration decisions. Moreover, a configuration API
makes it possible to apply a variety of configuration options
related to different aspects of application component place-
ment and execution. A dashboard facilitates the real-time
visualization of the status of the system and of telemetry in-
formation, while a control panel enables manual control of
the system.

In our future work, we intend to extend our testbed to
directly support the training and validation of pluggable
machine learning models that make the various manage-
ment/configuration decisions in an automated way.
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